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Shape Analysis and Computational Anatomy

General idea:

Shape analysis is the study of datasets of shapes, and their correlation with one
another and other variables.

Build a suitable “shape space”. Analyzing shapes involves:

Moving in that space, i.e., finding deformations along which shapes
evolve from one instance to another,
Comparing shapes in the space, e.g., by finding deformations as above
that requires the least ”energy”, so that bigger variations of shapes
require higher energy.
Parametrizing shape variations around a given reference shape. This
should allow the application of statistical methods on the data set that
take into account the geometric variations between the shapes.

Each of these steps requires some form of shape registration: finding a certain
deformation from one shape onto another.
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Illustration
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Shape registration

Goal: compare shapes while taking into account their geometric properties.

Idea: Use diffeomorphisms: deformations of the ambient space that preserve local and
global geometric properties. The more different two shapes are, the more deformation
is needed to map one close to the other.
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How to build diffeomorphisms

For t ∈ [0, 1], velocity field v(t) : Rd → Rd . The position x(t) ∈ Rd at time t of a
particle that moves along this velocity field is described by

dx

dt
(t) = v(t, x(t)).

This gives a deformation of the space at time t, denoted ϕ(t), so that ϕ(t, x) is the
position at time t of the particle that started its motion at x at time 0. In particular,
ϕ(0, x) = x .

As long as we take v(t) ”very regular” with respect to the space variables, the
transformation will be a diffeomorphism: it will map smooth curves onto smooth
curves, corners onto corners, and preserve presence or lack of self-intersection points.
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Controlling Diffeomorphisms with Vector Fields

Final Grid



Energy of Deformation for Shape Registration

Fix a shape q0, the template, from which we want to register another shape q1

(the target).

A time-dependent velocity field (t, x) 7→ v(t, x) yields a deformation
(t, x) 7→ ϕ(t, x), which acts onto q0 as denoted by q(t) := ϕ(t) · q0. The goal is
now to find v∗ which minimizes a functional

J(v) =
1

2

∫ 1

0
‖v(t)‖2

V dt + g(q(1)),

where ‖ · ‖V is an appropriate Hilbert norm (for instance, one can take a
sufficiently smooth Sobolev norm). The data atachment g(q(1)) is a crude
measure of the difference between the deformed shape q(1) and the target q1.
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Reduction

Proposition

For a certain appropriate ‖ · ‖V , the following holds.

Assume the shape q0 can be described by a finite family q0 = (x1, . . . , xn) ∈ (Rd )n.
For example, q0 is a triangulated surface. Denote v∗ a minimizer of the cost J.

Then for each time t, v∗(t) is a sum of Gaussian vector fields centered at each xi with
fixed variance, that is,

v∗(t, x) =
n∑

i=1

pi (t)e
− |x−xi (t)|2

σ2 , pi (t) ∈ Rd , σ ∈ R∗
+.

In this case,

‖v∗(t)‖2
V =

n∑
i,j=1

pi (t)Tpj (t)e
−
|xi (t)−xj (t)|2

σ2 .

We call p(t) the momentum of the deformation at time t.

Remark: This finite dimensional reduction can be performed for more general Hilbert
norms ‖ · ‖V , although the formula for v∗ would be slightly different.
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Reduced Problem

We can simply work on t 7→ (p1(t), . . . , pn(t)): we are left with minimizing

JR(p1, . . . , pn) =
n∑

i,j=1

∫ 1

0
pi (t)Tpj (t)e

−
|xi (t)−xj (t)|2

σ2 dt + g(x1(1), . . . , xn(1)),

with (x1(0), . . . , xn(0)) = q0 and

ẋi (t) =
n∑

j=1

pi (t)e
−
|xi−xj (t)|2

σ2 , i = 1, . . . , n.

This is a finite dimensional optimal control problem.

Remark: Choosing pi (t) yields all of v∗(t): we can still compute the whole
diffeomorphism ϕ(t). Useful for finding geometric markers.
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Controlling Diffeomorphisms with Vector Fields: Reduced
form

Final Deformed Surface



Pontryagin Principle

Consider the Hamiltonian

H(q, p) = H(x1, . . . , xn, p1, . . . , pn) =
1

2

n∑
i,j=1

pi (t)Tpj (t)e
−
|xi (t)−xj (t)|2

σ2 .

Theorem

For reasonnable ‖ · ‖V and g , minimizers (t, x) 7→ v(t, x) of J are completely
determined by the value of p(0) = (p1(0), . . . , pn(0)), through the Hamiltonian
equation

ẋi (t) = v(t, xi (t)) = ∇piH(q(t), p(t)) =
n∑

j=1

pj (t)e
−
|xi (t)−xj (t)|2

σ2 ,

ṗi (t) = −∇xiH(q(t), p(t)).

Moreover, in this case,
J(v) = H(q0, p(0)) + g(q(1)).
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Registration

Registration problem reduced to minimizing

J̃(p0) = H(q0, p0) + g(q(1)),

where q(1) is obtained by solving the previous Hamiltonian equation with q(0) = q0

and p(0) = p0. The corresponding minimizing initial momentum p∗0 = p0(q1)
completely encodes the deformation from q0 to q1.
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Karcher Mean and Hypertemplate

Assume we have q̃1, . . . , q̃k , k distinct shapes, representing same organ/part of the
brain among various patients. First step for statistical analysis: compute average
shape, which will be used as the template from which all shapes are registered.

Problem: average unknown, and the q̃i are generally noisy/not well adapted to apply
diffeomorphisms to.

Take nice hypertemplate q0. Minimize w.r. to v0, ṽ1, . . . , ṽk the functional

λ

∫ 1

0
‖v0(t)‖2dt +

1

2

k∑
i=1

∫ 1

0
‖ṽi (t)‖2dt + gi (ϕ̃i (1) ◦ ϕ0(1) · q0).

The average shape will be q̄ = ϕ0(1) · q0, and we will simultaneously have registered
every q̃k from q̄ through some initial momentum pk from q̄, from which we can
deduce corresponding the velocity fields that bring q̄ to q̃k .
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Example of Application: Smoothing Data
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Other Geometric Markers

We have an average shape q̄ over a data set q̃1, . . . , q̃k , registered as initial
momenta p1, . . . , pk along q̄. However, it is hard to directly give them a
geometric meaning.

Instead, each pk yields a corresponding minimizing vector field ṽk (t) which
integrates into a deformation of the space ϕ̃k (1). These have a precise
geometric interpretation.

For example, when studying degenerative diseases, one can compute the change
of volume between the average shape q̄ and each deformed shape ϕ̃k · q̄. This
can be used to differentiate controls from sick patients in a study.

We can be even more precise: compute the (total, surface, normal) jacobian of
each deformation ϕ̃k at each point of the template, or the elastic strain along
certain direction when getting from the template to one of the data points...
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Application: BIOCARD Study

By M. Miller, M. Albert, L. Younes et al.

1995-2008: Alzheimer’s disease longitunal study at NIH

350 healthy subjects with large proprotion at risk of dementia and AD

1-6 MRI scans per subject

Goal: Identify shape structures that are primarily affected (ERC, hippocampus,
amygdala).
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Application: BIOCARD Study

All subjects were healthy at beginning of study

At end of study, 66 patients diagnosed with mild cognitive impairment or
dementia.

Longitudinal model comparing differences between controls (healthy until end of
study) and MCI patients.
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Going further:

Many variants and generalizations:

Using sums of kernels to study various scales of deformations

Many possibilities for g , usually currents (Glaunès) or varifolds (Charon)

Deformation modules (Gris): flexible generalization with “explicit” constraints
on the deformations, also allows the learning of those constraints/types of
deformations/metrics.

For following time-varying shapes, it would be good to take physical properties of the
objects studied into accounts.

Geometric Control viewpoint (A., Azencott, Gris, Trélat, Trouvé, Younes...)
allows flexible addition of constraints on the deformation such as imposing
volume-decreasing diffeomorphisms.

Growth simulation (Kaltenmark)

One can also add various elastic energies on the deformations (ongoing work
with Charon, Hsieh, Younes).

Sylvain Arguillère (CNRS, LPP) Shape Analysis in Biology WorkshopShape Analysis Through Diffeomorphisms



Thank you for your attention!
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