Shape Analysis with Applications in Bioinformatics

Chris Fallaize

November 2019

UNITED KINGDOM - CHINA • MALAYSIA

Outline

(1) Statistical Shape Analysis

- Representation and Alignment
- Unlabelled Shape Analysis
- Bayesian Alignment
(2) Multiple Alignment
- Motivation - Molecular Alignment
- Hierarchical Template Model
- Application
(3) Sequence-Structure Alignment
- Motivation - Protein Alignment
- Sequence-Structure Model
- Modelling Evolutionary Distance

Registration:landmark-based objects

- Identify L landmarks, with coordinates $x_{j} \in \mathbb{R}^{d}, j=1, \ldots, L$.
- Represent as $(L \times d)$ configuration of points, with rows x_{j}^{T} giving coordinates of landmark j.
- Seek optimal alignment with another $(L \times d)$ configuration Y.
- Labelled case, where x_{j} is known to match $y_{j}, j=1, \ldots, L$.
- Minimise objective function

$$
f(A, c, \delta)=\sum_{j=1}^{L}\left\|x_{j}-c A y_{j}-\delta\right\|^{2}
$$

for rotation matrix A, translation vector $\delta \in \mathbb{R}^{d}$ and scale factor $c>0$.

- An important problem is the unlabelled case, where correspondence between landmarks on different configurations is unknown (e.g. molecular data).

Unlabelled shape analysis

- Configurations X, Y of sizes m and n. In general $m \neq n$.
- What if correspondence between landmarks on different configurations unknown?
- Introduce matching matrix M such that

$$
M_{j k}=\left\{\begin{array}{cc}
1 & x_{j} \text { corresponds to } y_{k} \\
0 & \text { otherwise }
\end{array}\right.
$$

- Require simultaneous inference for M and transformation parameters.
- EM algorithm (Kent, Mardia and Taylor, 2010).
- Bayesian-Procrustes model (Dryden, Hirst and Melville, 2007; Schmidler, 2007; Rodriguez and Schmidler, 2014).
- Bayesian hierarchical model, rigid-body (Green and Mardia, 2006).
- Full similarity shape (Mardia et.al., 2013).
- Example applications:
- Molecular alignment.
- Fingerprint matching (Forbes and Lauritzen, 2013).

Simulated illustration

Simulated illustration

Simulated illustration

Green-Mardia model

- The observed points are

$$
\begin{gathered}
x_{j} \sim N\left(\mu_{\xi_{j}}, \sigma^{2} I_{d}\right), \quad j=1, \ldots, m \\
A y_{k}+\delta \sim N\left(\mu_{\eta_{k}}, \sigma^{2} I_{d}\right), \quad k=1, \ldots, n
\end{gathered}
$$

derived from hidden configuration μ.

- Transformation parameters are rotation matrix A and translation vector δ.
- Joint posterior: $p(M, A, \delta, \sigma, x, y) \propto p(A) p(\delta) p(\sigma) p(M, x, y)$, where

$$
\begin{aligned}
p(M, A, \delta, \sigma, x, y) \propto & p(A) p(\delta) p(\sigma) \kappa^{L} \sigma^{-L d} \\
& \times \exp \left\{-\frac{1}{4 \sigma^{2}} \sum_{j, k: M_{j k}=1}\left\|\left(x_{j}-A y_{k}-\delta\right)\right\|^{2}\right\} .
\end{aligned}
$$

- Given L matches, uniform prior on M.
- $p(M \mid L) \propto 1, \quad p(M) \propto \kappa^{L}$.

Multiple Alignment

Multiple alignment

- Suppose we want to align $C \geq 3$ configurations.
- Ruffieux and Green (2009) and Dryden, Hirst and Melville (2007) describe models for simultaneous multiple alignment.
- Assumes one common underlying structure.
- We propose a multi-stage pairwise alignment algorithm.
- Successively builds hierarchy of templates representing matched points.
- Allows possibility of multiple subsets of configurations.
- Similarities (and differences) with hierarchical clustering.
- Motivation - multiple alignment of ligands in bioinformatics.

Pharmacophore models

- Pharmacophore models are a key ingredient in the discovery of new drugs.
- Drug activity controlled by interaction of active molecule, called a ligand, with a protein active site.
- A ligand must have certain chemical features in the correct spatial orientation to be recognised at the active site.
- A pharmacophore model simultaneously captures this chemical and geometric information. This model can be used to screen for other potentially-active molecules.

Motivation

- Since shape is key to activity of a molecule, we could use ideas from (unlabelled) statistical shape analysis.
- Chemical features common to a set of active ligands, in the same orientation, could be responsible for activity.
- Objective is to obtain estimate(s) of mean shape - for use as templates for pharmacophore models.
- Could be clusters with different mean shape (core features).
- Example - diverse set of protein kinase inhibitors.

Hierarchical template model

- Start with a set of C configurations $\left\{x_{i}\right\}, i=1 \ldots C$.
- Suppose there is a mean configuration of n_{0} points, μ say, of points common to all configurations.
- Define matching array $M_{i j k}$, where

$$
M_{i j k}=\left\{\begin{array}{cc}
1 & \text { if } x_{i j} \\
0 & \text { corresponds to } \mu_{k} \\
\text { otherwise },
\end{array}\right.
$$

and $x_{i j}$ is point j on configuration i.

Hierarchical template model

- Conditional on μ, for i, j, k such that $M_{i j k}=1$,

$$
A_{i} x_{i j}+\delta_{i} \mid \mu_{k} \sim N\left(\mu_{k}, \sigma^{2} I_{d}\right)
$$

- A_{i} is a rotation matrix and δ_{i} is a translation vector aligning configuration x_{i} and μ.
- We can then proceed with a pairwise alignment, using a pairwise method which provides estimates of the transformation parameters and M.
- A point estimate of μ is then given by

$$
\hat{\mu}_{k}=\left(\sum_{i=1}^{c} \sum_{j=1}^{n_{i}} \hat{M}_{i j k}\left(\hat{A}_{i} x_{i j}+\hat{\delta}_{i}\right)\right) / \sum_{i=1}^{C} \sum_{j=1}^{n_{i}} \hat{M}_{i j k}
$$

Implementation

- Initial set of configurations $\left\{x_{1}, \ldots, x_{C}\right\}$.
- Consider all possible pairwise alignments.
- Evaluate the alignment for each pair $\left(i, i^{\prime}\right)$ using a score based on geometric mean, \mathcal{G}, which on the log scale is

$$
n_{0}^{-1} \sum_{j, k: \hat{M}_{j k}=1} \log \hat{p}_{j k},
$$

where n_{0} is the number of matched points and $\hat{p}_{j k}$ is the estimated probability that points $x_{i j}$ and $x_{i^{\prime} k}$ are matched.

- Each alignment gives an estimate $\hat{\mu}_{\left(i, i^{\prime}\right)}$.
- Take the pair with the best score, $(1,2)$ say, and use these to obtain an estimate $\hat{\mu}_{(1,2)}=T_{12}$, say.
- Add T_{12} to the set of configurations, removing the two configurations merged to produce it.

Implementation

- New set is $\left\{x_{3}, \ldots, x_{C}, T_{12}\right\}$.
- Now evaluate all pairwise alignments in the new set.
- Proceed successively, taking the best pairwise alignment at each stage to produce a new estimate $\hat{\mu}$, removing the two elements which are merged to produce it.
- Stop when no further pairwise alignments exceed some chosen threshold, $\mathcal{G}_{\text {min }}$ say.
- May output one cluster of configurations, or multiple clusters each providing a different estimate of the mean shape.

Application

- 2 datasets derived from SitesBase (Gold and Jackson, 2006) of ligands binding at structurally-related protein active sites.

Results

Ligands	
810	\mathcal{G}
134567911	0.84

Table: Subsets found in dataset 1

$$
\begin{array}{lc}
\text { Ligands } & \mathcal{G} \\
\hline 236 & 0.99 \\
91011 & 0.96 \\
457 & 0.81
\end{array}
$$

Table: Subsets found in dataset 2

Results-dataset 1

Results-dataset 1

ob

Results-dataset 2

Results-dataset 2

Results-dataset 2

Results-dataset 2

Results-dataset 2

Results-dataset 2

Multiple Alignment: Summary

- Problems/challenges:
- Not fully model-based (propagation of uncertainty in the clustering).
- No "backtracking" - better solutions missed if "wrong path" taken early.
- Non-overlapping clusters.
- Desiderata/questions:
- Better representation of data?
- Overlapping clusters.
- Computational efficiency.
- Mapping of mean shapes to realistic molecules/pharmacophore models.

Sequence-Structure Alignment

- Proteins are chains of amino acids, of which there are 20 types.
- Primary structure -- a sequence of letters, one for each amino acid.

A section of a protein (Protein Data Bank ID: 1GKY).

- Folds into a $3 d$ structure, determined by the properties of the amino acids in the chain.
- Secondary structure elements are beta strands and alpha helices.
- The structure of a protein is much more conserved over long evolutionary periods than its sequence.

Proteins

- Amino acids all have the following form, and the residue R determines which of the 20 types an amino acid is.

Peptide bonds

- Adjacent amino acids form peptide bonds to produce the protein chain.

Protein structure

Protein alignment

- The goal is to align the structures, to assess structural similarity. More informative than assessing via sequences alone.
- We combine sequence information (sequence ordering and amino acid types) and structural information.

Protein alignment

- The goal is to align the structures, to assess structural similarity. More informative than assessing via sequences alone.
- We combine sequence information (sequence ordering and amino acid types) and structural information.

Protein alignment

- We represent each amino acid by the location of its C_{α} atom.

Sequence alignment

- Alignment problem: to identify the correspondence between amino acids on two proteins.
- Gaps enable the alignment of compatible amino acid types, allowing for insertions, deletions and substitutions in the protein sequences.

S^{x}	H	E	A	G	A	W	G	H	E	E
S^{y}	P	-	-	-	A	W	H	E	A	E

(a)

S^{x}	H	E	A	G	A	W	G	H	E	-	E
S^{y}	-	P	-	-	A	W	-	H	E	A	E

(b)

- Gaps can be in one sequence (a), or in both sequences (b).
- Sequence orders are preserved.

Scoring sequence alignments

- Scoring systems, such as PAM matrices, are used to score matches between each pair of amino acid types.
- Penalty functions penalise the number and length of gaps in an alignment.
- For a gap of length r, a commonly-used penalty function is

$$
f(r)=-g-(r-1) h,
$$

where g is a gap opening penalty and h is an extension penalty.

- Total score (log scale) of an alignment: total score of aligned pairs + total gap penalty.
- We consider alignment of proteins using both 1-dimensional (amino acid sequence order and perhaps type) and 3-dimensional (C_{α} atomic coordinates) information.
- Gap penalty prior (Rodriguez and Schmidler, 2014) for the matching matrix M :

$$
p(M ; g, h)=Z(g, h) \exp \{-g S(M)-h L(M)\}
$$

where $S(M)$ is the number of gaps, r_{i} is the length of the i th gap, $L(M)=\sum_{i=1}^{S(M)}\left(r_{i}-1\right)$ is the total gap extensions and $Z(g, h)$ is a normalising constant.

- Previous prior for M was

$$
p(M ; \kappa) \propto \kappa^{L}
$$

where L is the number of matches given by M.

- Gap penalty prior (Rodriguez and Schmidler, 2014) for the matching matrix M :

$$
p(M ; g, h)=Z(g, h) \exp \{-g S(M)-h L(M)\}
$$

- This ignores amino acid type information, and just penalises the gap component of the alignment. (Though type information can easily be included.)
- For example, the alignment

S^{x}	H	E	A	G	A	W	G	H	E	-	E
S^{y}	-	P	-	-	A	W	-	H	E	A	E

Model

- Write

$$
U(M ; g, h)=g S(M)+h L(M)
$$

the total gap penalty.

- The joint posterior distribution is

$$
\begin{aligned}
p(M, A, \delta, \sigma, x, y) \propto & p(A) p(\delta) p(\sigma) v^{L} \sigma^{-L d} \exp \{-U(M ; g, h)\} \\
& \times \exp \left\{-\frac{1}{4 \sigma^{2}} \sum_{j, k: M_{j k}=1}\left\|\left(x_{j}-A y_{k}-\delta\right)\right\|^{2}\right\} .
\end{aligned}
$$

- Matching matrix M updated by proposing small perturbations whilst preserving sequence order.

Example

- A guanylate kinase, 1GKY, and an adenylate kinase, 2AK3. "Twilight zone" - low sequence identity ($<20 \%$ of matched pairs are of same type).
- Use $g=4, h=0.1$, so higher penalty for gap openings than extensions.

Example

- A guanylate kinase, 1GKY, and an adenylate kinase, 2AK3.
- Sample from posterior distribution of alignments, highlighting areas of uncertainty in the alignment and regions of high structural conservation.

Example

- A guanylate kinase, 1GKY, and an adenylate kinase, 2AK3.
- Samples posterior distribution of alignments, highlighting areas of uncertainty in the alignment and regions of high conservation.

Example

- Pair 1CEW - 1OUN. Two alternative alignments of first helix.
- Assess relative merit by posterior probabilities.

Example

- Alternative alignments of helix.

A general form of penalty

- More generally, we ${ }^{1}$ consider priors of the form

$$
p(M ; \boldsymbol{\theta})=Z(\boldsymbol{\theta}) \exp \left\{-\sum_{i} f(\text { penalty for gap } i ; \boldsymbol{\theta})\right\} .
$$

- Implementation (MCMC) can still proceed in the same way - just change in penalty required given a proposal M^{\prime}.
- Motivation: For previous gap penalty prior, given L matched points and S "gap instances" (blocks of consecutive gaps, over both sequences), the j and k indices forming the matched points are independent a-priori.
- In fact,

$$
U(M ; g, h)=(g-h) S+(m+n-2 L)
$$

so penalty depends only on S and L.

[^0]
Example (Green, 2015.) ${ }^{2}$

- Suppose $m=9, n=15$ and $L=3$. Two possible alignments are given by the sets of indices

Xindex	0	4	5	9	10
Y index	0	7	8	12	16

and

X index	0	4	5	9	10
Y index	0	7	11	12	16

- Both give $S=5$ and $L=3$, and hence are equally preferable under the prior.
- At least intuitively, we might prefer the first alignment.
- In fact, if the X indices are $(1,2,3)$ (ignoring endpoints), then any set of y indices of the form $(2, k, 14), k=4, \ldots, 12$ would be equally preferable.

[^1]
New penalty

- We consider adding an additional penalty term to discourage this sort of situation.
- Consider the matches defined by the triples $\left(j_{1}, j_{2}, j_{3}\right)$ and $\left(k_{1}, k_{2}, k_{3}\right)$. Then given $j_{1}, j_{3}, k_{1}, k_{3}$, we encourage matches between j_{2} and k_{2} which preserve "proportionality".
- Specifically, we introduce

$$
\gamma(q ; \nu)=\frac{\nu q^{2}}{2}
$$

where

$$
q=\log \left[\frac{\left(j_{2}-j_{1}\right) /\left(j_{3}-j_{2}\right)}{\left(k_{2}-k_{1}\right) /\left(k_{3}-k_{2}\right)}\right],
$$

and total penalty contribution for these indices is $\gamma(q)+$ any gap opening/extension penalties as previously.

- Total overall penalty is still just a sum over successive pairs and triples of the matching indices.

New penalty

- In general, given L matches, we have L triples of matching indices in the X sequence, given by
$\left(j_{0}, j_{1}, j_{2}\right),\left(j_{1}, j_{2}, j_{3}\right), \ldots,\left(j_{L-1}, j_{L}, j_{L+1}\right)$.
- Similarly, in the Y sequence we have the L triples
$\left(k_{0}, k_{1}, k_{2}\right),\left(k_{1}, k_{2}, k_{3}\right), \ldots,\left(k_{L-1}, k_{L}, k_{L+1}\right)$.
- The total penalty function is

$$
U(M ; g, h, \nu)=g S(M)+h L(M)+\sum_{i=1}^{L} \gamma\left(q_{i} ; \nu\right)
$$

- Letting $\nu=0$, we obtain the original penalty.
- Many other possibilities

Application: 1GKY - 2AK3

$$
\nu=0.25 .
$$

Application: 1GKY - 2AK3

$$
\nu=4.0 .
$$

Application: 16 "challenging" protein pairs.

Inference for θ

- Prior is

$$
p(M ; \boldsymbol{\theta})=Z(\boldsymbol{\theta}) \exp \{-U(M ; \boldsymbol{\theta})\} .
$$

- Could treat $\boldsymbol{\theta}$ as unknown, adding an extra layer to the hierarchy.
- Standard MCMC requires knowledge of

$$
Z(\boldsymbol{\theta})^{-1}=\sum_{M^{\prime}} \exp \left\{-U\left(M^{\prime} ; \boldsymbol{\theta}\right)\right\}
$$

- Methods which avoid this require ability to simulate from the distribution.
- For the standard gap penalty, there are efficient recursions for both computation of constant and simulation (mimicking the standard forward/backward algorithm in sequence alignment).
- This algorithm doesn't seem feasible computationally for general penalty.

Incorporating amino acid types

- We can also incorporate amino acid type information.
- Sequence of X is S^{\times}, with elements $s_{j}^{X} \in \mathcal{S}, j=1, \ldots, m$ and \mathcal{S} is the set of integers $1-20$ representing each of the 20 amino acid types.
- Similar definition for the sequence of Y, S^{y}.
- The sequence likelihood is

$$
p\left(S^{x}, S^{y} \mid M, \Psi^{\prime}\right)=\prod_{j, k: M_{j k}=1} \psi_{s_{j}^{x} s_{k}^{y}}^{\prime} \prod_{j=1}^{m} q_{s_{j}^{x}} \prod_{k=1}^{n} q_{s_{k}^{y}},
$$

where Ψ^{\prime} is a 20×20 PAM matrix for scoring each pair of amino acid types, accounting for an evolutionary distance l.

- q_{s} is the background proportion of an amino acid of type s in all proteins.

PAM matrices

- PAM - "point accepted mutations".
- The elements of Ψ^{\prime} are

$$
\Psi_{a b}^{\prime}=\frac{p_{a b}^{(I)}}{q_{a} q_{b}}, \quad a, b=1, \ldots, 20
$$

where $p_{a b}^{(I)}$ is the probability of an amino acid of type a being substituted into an amino acid of type b over an evolutionary distance of l, and q_{a}, q_{b} are the relative proportions of amino acid types a and b in all proteins.

- One-step transitions $p_{a b}^{(1)}$ estimated from alignments of closely related proteins, rescaled so that probability of a substitution to a different amino acid type at any one site over one "evolutionary unit" is 0.01 .
- For PAM-I matrix, /\% "point accepted mutations". The larger the value of I, the greater the tolerance to substitutions, implying a longer evolutionary distance.
- As $I \rightarrow \infty, p_{a b}^{(I)}$ tends to product of background probabilities.

Model

- The joint posterior distribution is now

$$
\begin{aligned}
p\left(M, A, \delta, \sigma, x, y, S^{\times}, S^{y}\right) \propto & p(A) p(\delta) p(\sigma) v^{L} \exp \{-U(M ; \theta)\} \\
& \times \prod_{j, k: M_{j, k}=1} \frac{\psi_{s_{j}^{x} s_{k}^{y}}^{\prime} \phi\left\{\left(x_{j}-A y_{k}-\delta\right) /(\sigma \sqrt{2})\right\}}{(\sigma \sqrt{2})^{d}} \\
& \times \prod_{j=1}^{m} q_{s_{j}^{x}} \prod_{k=1}^{n} q_{s_{k}^{y}} .
\end{aligned}
$$

- We can consider / to be fixed (use a fixed PAM matrix) or include it as an unknown in the model and obtain its marginal posterior.
- This framework allows a natural measure of the evolutionary distance between two proteins.
- For convenience, we consider a discrete set of possible values for l.

Example

- Example: Guanylate kinase pair 1GKY-1LVG. Closely related ($\approx 52 \%$ sequence identity).
- Posterior mode of l is 80 .

Example

- Example: The pair 1GKY-2AK3 revisited.
- Posterior mode of I is 260 , indicating a longer evolutionary distance.

Conclusions

- Fully Bayesian model allows joint inference for matching and transformation/alignment.
- Flexibility to incorporate various forms of prior information.
- Biologically-meaningful results.
- Future work:
- Large-scale assessment of improvement in alignments using general penalty functions.
- Inference for $\boldsymbol{\theta}$ in general penalty functions.
- Changes to model/prior to allow e.g. protein flexibility ("twists"), non-sequential matching (domain swaps).
- Incorporate additional information, e.g. hydrogen bonding, electrostatic potentials.
- Multiple configurations - alignment, clustering, structure classification.

References

- Dryden, I.L., Hirst, J.D. and Melville, J.L. (2007). Statistical analysis of unlabeled point sets: comparing molecules in chemoinformatics. Biometrics, 63, 237-251.
- Fallaize, C.J., Green, P.J., Mardia, K.V. and Barber, S. (2019). Bayesian protein sequence and structure alignment. arXiv: 1404.1556.
- Forbes, P.G.M and Lauritzen, S. (2013). Fingerprint Analysis using Bayesian Alignment. In Proceedings of LASR 2013, 81-84.
- Gold, N.D. and Jackson, R.M. (2006). SitesBase: a database for structure-based protein-ligand binding site comparisons. Nucleic Acids Research, 34, D231-D234.
- Green, P.J. and Mardia, K.V. (2006). Bayesian alignment using hierarchical models, with applications in protein bioinformatics. Biometrika, 93, 234-254.
- Kent, J.T., Mardia, K.V. and Taylor, C.C. (2010). Matching unlabelled configurations and protein bioinformatics. Technical report, University of Leeds.

References

- Mardia, K.V., Fallaize, C.J., Barber, S., Jackson, R.M. and Theobald, D.L. (2013). Bayesian alignment of similarity shapes. Annals of Applied Statistics, 989-1009.
- Mardia, K.V., Nyirongo, V.B., Fallaize, C.J., Barber, S. and Jackson, R.M. (2011). Hierarchical Bayesian modeling of pharmacophores in bioinformatics. Biometrics, 67, 611-619.
- Rodriguez, A. and Schmidler, S.C. (2014). Bayesian protein structure alignment. Annals of Applied Statistics, 8, 2068-2095.
- Ruffieux, Y. and Green, P.J. (2009). Alignment of multiple configurations using hierarchical models. Journal of Computational and Graphical Statistics, 18, 756-773.
- Schmidler, S.C. (2007). Fast Bayesian shape matching using geometric algorithms. In Bayesian Statistics 8, 471-490.

[^0]: ${ }^{1}$ Fallaize, Green, Mardia and Barber (2019). arXiv: 1404.1556.

[^1]: ${ }^{2}$ In Geometry Driven Statistics. Dryden I.L. and Kent, J.J. (eds).

