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Registration:landmark-based objects

Identify L landmarks, with coordinates xj ∈ R
d , j = 1, . . . , L.

Represent as (L× d) configuration of points, with rows xTj giving
coordinates of landmark j .

Seek optimal alignment with another (L× d) configuration Y .

Labelled case, where xj is known to match yj , j = 1, . . . , L.

Minimise objective function

f (A, c , δ) =
L

∑

j=1

||xj − cAyj − δ||2

for rotation matrix A, translation vector δ ∈ R
d and scale factor

c > 0.

An important problem is the unlabelled case, where correspondence
between landmarks on different configurations is unknown (e.g.
molecular data).



Unlabelled shape analysis

Configurations X ,Y of sizes m and n. In general m 6= n.

What if correspondence between landmarks on different
configurations unknown?

Introduce matching matrix M such that

Mjk =

{

1 xj corresponds to yk
0 otherwise.

Require simultaneous inference for M and transformation parameters.

EM algorithm (Kent, Mardia and Taylor, 2010).
Bayesian-Procrustes model (Dryden, Hirst and Melville, 2007;
Schmidler, 2007; Rodriguez and Schmidler, 2014).
Bayesian hierarchical model, rigid-body (Green and Mardia, 2006).
Full similarity shape (Mardia et.al., 2013).

Example applications:

Molecular alignment.
Fingerprint matching (Forbes and Lauritzen, 2013).



Simulated illustration
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Green-Mardia model

The observed points are

xj ∼ N(µξj , σ
2Id ), j = 1, . . . ,m,

Ayk + δ ∼ N(µηk , σ
2Id ), k = 1, . . . , n,

derived from hidden configuration µ.

Transformation parameters are rotation matrix A and translation
vector δ.

Joint posterior: p(M,A, δ, σ, x , y) ∝ p(A)p(δ)p(σ)p(M, x , y), where

p(M,A, δ, σ, x , y) ∝ p(A)p(δ)p(σ)κLσ−Ld

× exp







− 1

4σ2

∑

j ,k:Mjk=1

||(xj − Ayk − δ)||2






.

Given L matches, uniform prior on M.

p(M|L) ∝ 1, p(M) ∝ κL.



Multiple Alignment



Multiple alignment

Suppose we want to align C ≥ 3 configurations.

Ruffieux and Green (2009) and Dryden, Hirst and Melville (2007)
describe models for simultaneous multiple alignment.

Assumes one common underlying structure.

We propose a multi-stage pairwise alignment algorithm.

Successively builds hierarchy of templates representing matched points.
Allows possibility of multiple subsets of configurations.
Similarities (and differences) with hierarchical clustering.
Motivation - multiple alignment of ligands in bioinformatics.



Pharmacophore models

Pharmacophore models are a key ingredient in the discovery of new
drugs.

Drug activity controlled by interaction of active molecule, called a
ligand, with a protein active site.

A ligand must have certain chemical features in the correct spatial
orientation to be recognised at the active site.

A pharmacophore model simultaneously captures this chemical and
geometric information. This model can be used to screen for other
potentially-active molecules.



Motivation

Since shape is key to activity of a molecule, we could use ideas from
(unlabelled) statistical shape analysis.

Chemical features common to a set of active ligands, in the same
orientation, could be responsible for activity.

Objective is to obtain estimate(s) of mean shape — for use as
templates for pharmacophore models.

Could be clusters with different mean shape (core features).

Example - diverse set of protein kinase inhibitors.



Hierarchical template model

Start with a set of C configurations {xi}, i = 1 . . .C .

Suppose there is a mean configuration of n0 points, µ say, of points
common to all configurations.

Define matching array Mijk , where

Mijk =

{

1 if xij corresponds to µk
0 otherwise,

and xij is point j on configuration i .



Hierarchical template model

Conditional on µ, for i ,j ,k such that Mijk = 1,

Aixij + δi |µk ∼ N(µk , σ
2Id ).

Ai is a rotation matrix and δi is a translation vector aligning
configuration xi and µ.

We can then proceed with a pairwise alignment, using a pairwise
method which provides estimates of the transformation parameters
and M.

A point estimate of µ is then given by

µ̂k =





C
∑

i=1

ni
∑

j=1

M̂ijk(Âixij + δ̂i )



 /
C
∑

i=1

ni
∑

j=1

M̂ijk



Implementation

Initial set of configurations {x1, . . . , xC}.
Consider all possible pairwise alignments.

Evaluate the alignment for each pair (i , i ′) using a score based on
geometric mean, G, which on the log scale is

n−1
0

∑

j ,k:M̂jk=1

log p̂jk ,

where n0 is the number of matched points and p̂jk is the estimated
probability that points xij and xi ′k are matched.

Each alignment gives an estimate µ̂(i ,i ′).

Take the pair with the best score, (1, 2) say, and use these to obtain
an estimate µ̂(1,2) = T12, say.

Add T12 to the set of configurations, removing the two configurations
merged to produce it.



Implementation

New set is {x3, . . . , xC ,T12}.
Now evaluate all pairwise alignments in the new set.

Proceed successively, taking the best pairwise alignment at each stage
to produce a new estimate µ̂, removing the two elements which are
merged to produce it.

Stop when no further pairwise alignments exceed some chosen
threshold, Gmin say.

May output one cluster of configurations, or multiple clusters each
providing a different estimate of the mean shape.



Application

2 datasets derived from SitesBase (Gold and Jackson, 2006) of
ligands binding at structurally-related protein active sites.



Results

Ligands G
8 10 0.84
1 3 4 5 6 7 9 11 0.49

Table: Subsets found in dataset 1

Ligands G
2 3 6 0.99
9 10 11 0.96
4 5 7 0.81

Table: Subsets found in dataset 2
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Multiple Alignment: Summary

Problems/challenges:

Not fully model-based (propagation of uncertainty in the clustering).
No “backtracking” — better solutions missed if “wrong path” taken
early.
Non-overlapping clusters.

Desiderata/questions:

Better representation of data?
Overlapping clusters.
Computational efficiency.
Mapping of mean shapes to realistic molecules/pharmacophore models.



Sequence-Structure Alignment



Proteins

Proteins are chains of amino acids, of which there are 20 types.

Primary structure —- a sequence of letters, one for each amino acid.

G T G K S T L L K K L F A

A section of a protein (Protein Data Bank ID: 1GKY).

Folds into a 3d structure, determined by the properties of the amino
acids in the chain.

Secondary structure elements are beta strands and alpha helices.

The structure of a protein is much more conserved over long
evolutionary periods than its sequence.



Proteins

Amino acids all have the following form, and the residue R determines
which of the 20 types an amino acid is.

C
B

O

H

R

C
A

N

H

H
OH



Peptide bonds

Adjacent amino acids form peptide bonds to produce the protein
chain.

C
B

C
B

N CA N CA CB N CA

H

H

R O

H

O

H

R

O

H

R

Peptide bonds



Protein structure



Protein alignment

The goal is to align the structures, to assess structural similarity.
More informative than assessing via sequences alone.
We combine sequence information (sequence ordering and amino acid
types) and structural information.



Protein alignment

The goal is to align the structures, to assess structural similarity.
More informative than assessing via sequences alone.

We combine sequence information (sequence ordering and amino acid
types) and structural information.



Protein alignment

We represent each amino acid by the location of its Cα atom.



Sequence alignment

Alignment problem: to identify the correspondence between amino
acids on two proteins.

Gaps enable the alignment of compatible amino acid types, allowing
for insertions, deletions and substitutions in the protein sequences.

Sx H E A G A W G H E E
Sy P - - - A W H E A E

(a)

Sx H E A G A W G H E - E
Sy - P - - A W - H E A E

(b)

Gaps can be in one sequence (a), or in both sequences (b).

Sequence orders are preserved.



Scoring sequence alignments

Scoring systems, such as PAM matrices, are used to score matches
between each pair of amino acid types.

Penalty functions penalise the number and length of gaps in an
alignment.

For a gap of length r , a commonly-used penalty function is

f (r) = −g − (r − 1)h,

where g is a gap opening penalty and h is an extension penalty.

Total score (log scale) of an alignment:
total score of aligned pairs + total gap penalty.

We consider alignment of proteins using both 1-dimensional (amino
acid sequence order and perhaps type) and 3-dimensional (Cα atomic
coordinates) information.



Prior for M

Gap penalty prior (Rodriguez and Schmidler, 2014) for the matching
matrix M:

p(M; g , h) = Z (g , h) exp {−gS(M)− hL(M)} ,

where S(M) is the number of gaps, ri is the length of the ith gap,

L(M) =
∑S(M)

i=1 (ri − 1) is the total gap extensions and Z (g , h) is a
normalising constant.

Previous prior for M was

p(M;κ) ∝ κL,

where L is the number of matches given by M.



Prior for M

Gap penalty prior (Rodriguez and Schmidler, 2014) for the matching
matrix M:

p(M; g , h) = Z (g , h) exp {−gS(M)− hL(M)} .

This ignores amino acid type information, and just penalises the gap
component of the alignment. (Though type information can easily be
included.)

For example, the alignment
Sx H E A G A W G H E - E
Sy - P - - A W - H E A E

gives S = 4, and r = 1, 1, 2, 1.



Model

Write
U(M; g , h) = gS(M) + hL(M),

the total gap penalty.

The joint posterior distribution is

p(M,A, δ, σ, x , y) ∝ p(A)p(δ)p(σ)vLσ−Ld exp{−U(M; g , h)}

× exp







− 1

4σ2

∑

j ,k:Mjk=1

||(xj − Ayk − δ)||2






.

Matching matrix M updated by proposing small perturbations whilst
preserving sequence order.



Example

A guanylate kinase, 1GKY, and an adenylate kinase, 2AK3. “Twilight
zone” — low sequence identity (< 20% of matched pairs are of same
type).
Use g = 4, h = 0.1, so higher penalty for gap openings than
extensions.
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Example

A guanylate kinase, 1GKY, and an adenylate kinase, 2AK3.

Sample from posterior distribution of alignments, highlighting areas of
uncertainty in the alignment and regions of high structural
conservation.
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Example

A guanylate kinase, 1GKY, and an adenylate kinase, 2AK3.

Samples posterior distribution of alignments, highlighting areas of
uncertainty in the alignment and regions of high conservation.
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Example

Pair 1CEW — 1OUN. Two alternative alignments of first helix.

Assess relative merit by posterior probabilities.
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Example

Alternative alignments of helix.
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A general form of penalty

More generally, we1 consider priors of the form

p(M;θ) = Z (θ) exp

{

−
∑

i

f (penalty for gap i ;θ)

}

.

Implementation (MCMC) can still proceed in the same way – just
change in penalty required given a proposal M ′.

Motivation: For previous gap penalty prior, given L matched points
and S “gap instances” (blocks of consecutive gaps, over both
sequences), the j and k indices forming the matched points are
independent a-priori.

In fact,
U(M; g , h) = (g − h)S + (m + n − 2L),

so penalty depends only on S and L.

1Fallaize, Green, Mardia and Barber (2019). arXiv: 1404.1556.



Example (Green, 2015.)2

Suppose m = 9,n = 15 and L = 3. Two possible alignments are given
by the sets of indices

X index 0 4 5 9 10
Y index 0 7 8 12 16

and
X index 0 4 5 9 10
Y index 0 7 11 12 16

Both give S = 5 and L = 3, and hence are equally preferable under
the prior.

At least intuitively, we might prefer the first alignment.

In fact, if the X indices are (1, 2, 3) (ignoring endpoints), then any set
of y indices of the form (2, k , 14), k = 4, . . . , 12 would be equally
preferable.

2In Geometry Driven Statistics. Dryden I.L. and Kent, J.T. (eds).



New penalty

We consider adding an additional penalty term to discourage this sort
of situation.

Consider the matches defined by the triples (j1, j2, j3) and (k1, k2, k3).
Then given j1, j3, k1, k3, we encourage matches between j2 and k2
which preserve “proportionality”.

Specifically, we introduce

γ(q; ν) =
νq2

2
,

where

q = log

[

(j2 − j1)/(j3 − j2)

(k2 − k1)/(k3 − k2)

]

,

and total penalty contribution for these indices is γ(q) + any gap
opening/extension penalties as previously.

Total overall penalty is still just a sum over successive pairs and
triples of the matching indices.



New penalty

In general, given L matches, we have L triples of matching indices in
the X sequence, given by
(j0, j1, j2), (j1, j2, j3), . . . , (jL−1, jL, jL+1).

Similarly, in the Y sequence we have the L triples
(k0, k1, k2), (k1, k2, k3), . . . , (kL−1, kL, kL+1).

The total penalty function is

U(M; g , h, ν) = gS(M) + hL(M) +

L
∑

i=1

γ(qi ; ν).

Letting ν = 0, we obtain the original penalty.

Many other possibilities ....



Application: 1GKY – 2AK3

Increasing Y index

Increasing X index
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Application: 1GKY – 2AK3

Increasing Y index

Increasing X index
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Application: 16 “challenging” protein pairs.
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Inference for θ

Prior is
p(M;θ) = Z (θ) exp {−U(M;θ)} .

Could treat θ as unknown, adding an extra layer to the hierarchy.

Standard MCMC requires knowledge of

Z (θ)−1 =
∑

M′

exp
{

−U(M ′;θ)
}

.

Methods which avoid this require ability to simulate from the
distribution.

For the standard gap penalty, there are efficient recursions for both
computation of constant and simulation (mimicking the standard
forward/backward algorithm in sequence alignment).

This algorithm doesn’t seem feasible computationally for general
penalty.



Incorporating amino acid types

We can also incorporate amino acid type information.

Sequence of X is Sx , with elements sxj ∈ S, j = 1, . . . ,m and S is the
set of integers 1− 20 representing each of the 20 amino acid types.

Similar definition for the sequence of Y , Sy .

The sequence likelihood is

p(Sx ,Sy |M,Ψl) =
∏

j ,k:Mjk=1

ψl
sx
j
s
y
k

m
∏

j=1

qsx
j

n
∏

k=1

qsy
k
,

where Ψl is a 20× 20 PAM matrix for scoring each pair of amino acid
types, accounting for an evolutionary distance l .

qs is the background proportion of an amino acid of type s in all
proteins.



PAM matrices

PAM — “point accepted mutations”.

The elements of Ψl are

Ψl
ab =

p
(l)
ab

qaqb
, a, b = 1, . . . , 20,

where p
(l)
ab is the probability of an amino acid of type a being

substituted into an amino acid of type b over an evolutionary distance
of l , and qa, qb are the relative proportions of amino acid types a and
b in all proteins.

One-step transitions p
(1)
ab estimated from alignments of closely related

proteins, rescaled so that probability of a substitution to a different
amino acid type at any one site over one “evolutionary unit” is 0.01.

For PAM-l matrix, l% “point accepted mutations”. The larger the
value of l , the greater the tolerance to substitutions, implying a
longer evolutionary distance.

As l → ∞, p
(l)
ab tends to product of background probabilities.



Model

The joint posterior distribution is now

p(M,A, δ, σ, x , y ,Sx ,Sy ) ∝ p(A)p(δ)p(σ)vL exp{−U(M; θ)}

×
∏

j ,k:Mj,k=1

ψl
sx
j
s
y
k

φ{(xj − Ayk − δ)/(σ
√
2)}

(σ
√
2)d

×
m
∏

j=1

qsx
j

n
∏

k=1

qsy
k
.

We can consider l to be fixed (use a fixed PAM matrix) or include it
as an unknown in the model and obtain its marginal posterior.

This framework allows a natural measure of the evolutionary distance
between two proteins.

For convenience, we consider a discrete set of possible values for l .



Example

Example: Guanylate kinase pair 1GKY-1LVG. Closely related (≈ 52%
sequence identity).

Posterior mode of l is 80.
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Example

Example: The pair 1GKY-2AK3 revisited.

Posterior mode of l is 260, indicating a longer evolutionary distance.
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Conclusions

Fully Bayesian model allows joint inference for matching and
transformation/alignment.

Flexibility to incorporate various forms of prior information.

Biologically-meaningful results.

Future work:

Large-scale assessment of improvement in alignments using general
penalty functions.
Inference for θ in general penalty functions.
Changes to model/prior to allow e.g. protein flexibility (“twists”),
non-sequential matching (domain swaps).
Incorporate additional information, e.g. hydrogen bonding, electrostatic
potentials.
Multiple configurations – alignment, clustering, structure classification.
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