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Registration:landmark-based objects

o Identify L landmarks, with coordinates x; € R?, j=1,...,L.

@ Represent as (L x d) configuration of points, with rows xJ-T giving
coordinates of landmark j.

@ Seek optimal alignment with another (L x d) configuration Y.
@ Labelled case, where x; is known to match y;, j=1,..., L.

@ Minimise objective function

L
f(A c,8) = IIx — cAy; — ||
j=1

for rotation matrix A, translation vector § € RY and scale factor
c>0.

@ An important problem is the unlabelled case, where correspondence
between landmarks on different configurations is unknown (e.g.
molecular data).



Unlabelled shape analysis

@ Configurations X,Y of sizes m and n. In general m # n.

@ What if correspondence between landmarks on different
configurations unknown?

@ Introduce matching matrix M such that

= { 1 Xxj corresponds to y

Mk = 0 otherwise.

@ Require simultaneous inference for M and transformation parameters.

o EM algorithm (Kent, Mardia and Taylor, 2010).
o Bayesian-Procrustes model (Dryden, Hirst and Melville, 2007;
Schmidler, 2007; Rodriguez and Schmidler, 2014).
@ Bayesian hierarchical model, rigid-body (Green and Mardia, 2006).
o Full similarity shape (Mardia et.al., 2013).
@ Example applications:

@ Molecular alignment.
@ Fingerprint matching (Forbes and Lauritzen, 2013).



Simulated illustration
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Green-Mardia model

@ The observed points are
X_]NN(M£J702Id)7 j:17"'7m7

Ay + 6 ~ N(y,, 02lq), k=1,...,n,

derived from hidden configuration p.

@ Transformation parameters are rotation matrix A and translation
vector 4.

@ Joint posterior: p(M, A, d,0,x,y) x p(A)p(d)p(c)p(M, x,y), where

p(M,A,d,0,x,y) o p(A)p(8)p(c)rtoH

1

X expy ~ 3 > 1105 — Ay =)
Jok:Mj=1

@ Given L matches, uniform prior on M.

o p(M|L) 1, p(M) o kb



Multiple Alignment



Multiple alignment

@ Suppose we want to align C > 3 configurations.

@ Ruffieux and Green (2009) and Dryden, Hirst and Melville (2007)
describe models for simultaneous multiple alignment.

@ Assumes one common underlying structure.

@ We propose a multi-stage pairwise alignment algorithm.

@ Successively builds hierarchy of templates representing matched points.
@ Allows possibility of multiple subsets of configurations.

o Similarities (and differences) with hierarchical clustering.

o Motivation - multiple alignment of ligands in bioinformatics.



Pharmacophore models

@ Pharmacophore models are a key ingredient in the discovery of new
drugs.

@ Drug activity controlled by interaction of active molecule, called a
ligand, with a protein active site.

@ A ligand must have certain chemical features in the correct spatial
orientation to be recognised at the active site.

@ A pharmacophore model simultaneously captures this chemical and
geometric information. This model can be used to screen for other
potentially-active molecules.



@ Since shape is key to activity of a molecule, we could use ideas from
(unlabelled) statistical shape analysis.

@ Chemical features common to a set of active ligands, in the same
orientation, could be responsible for activity.

@ Objective is to obtain estimate(s) of mean shape — for use as
templates for pharmacophore models.

@ Could be clusters with different mean shape (core features).

@ Example - diverse set of protein kinase inhibitors.




Hierarchical template model

@ Start with a set of C configurations {x;}, i=1...C.

@ Suppose there is a mean configuration of ng points, p say, of points
common to all configurations.

@ Define matching array M;j, where

Mo — 1 if xjj corresponds to fix
k=1 o0 otherwise,

and xj; is point j on configuration /.



Hierarchical template model

@ Conditional on p, for i,j,k such that M =1,
A,'X,'J' + 5,‘|/Lk ~ N(/Lk, 0’2/d).
@ A; is a rotation matrix and §; is a translation vector aligning

configuration x; and p.

@ We can then proceed with a pairwise alignment, using a pairwise
method which provides estimates of the transformation parameters
and M.

@ A point estimate of u is then given by

C n C n;
= DD M(Aig +6:) | /DD M

i=1 j=1 i=1 j=1



Implementation

@ Initial set of configurations {xi,...,xc}.
@ Consider all possible pairwise alignments.

@ Evaluate the alignment for each pair (7, ") using a score based on
geometric mean, G, which on the log scale is

gt Y log P,

where ng is the number of matched points and pj is the estimated
probability that points x;; and X/, are matched.

@ Each alignment gives an estimate fi(; ir).

@ Take the pair with the best score, (1,2) say, and use these to obtain
an estimate fi(1 2) = T12, say.

@ Add Ti; to the set of configurations, removing the two configurations
merged to produce it.



Implementation

@ New set is {x3,...,xc, T12}.
@ Now evaluate all pairwise alignments in the new set.

@ Proceed successively, taking the best pairwise alignment at each stage
to produce a new estimate /i, removing the two elements which are
merged to produce it.

@ Stop when no further pairwise alignments exceed some chosen
threshold, G,in say.

@ May output one cluster of configurations, or multiple clusters each
providing a different estimate of the mean shape.



Application

@ 2 datasets derived from SitesBase (Gold and Jackson, 2006) of
ligands binding at structurally-related protein active sites.




Ligands g
810 0.84
134567911 0.49

Table: Subsets found in dataset 1

Ligands @G

236 0.99
91011 0.96
457 0.81

Table: Subsets found in dataset 2
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Results-dataset 2
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Multiple Alignment: Summary

@ Problems/challenges:
@ Not fully model-based (propagation of uncertainty in the clustering).
@ No “backtracking” — better solutions missed if “wrong path” taken
early.
@ Non-overlapping clusters.

@ Desiderata/questions:
o Better representation of data?
Overlapping clusters.

)
o Computational efficiency.
o Mapping of mean shapes to realistic molecules/pharmacophore models.



Sequence-Structure Alignment



@ Proteins are chains of amino acids, of which there are 20 types.

@ Primary structure —- a sequence of letters, one for each amino acid.

G T G K S TULL KK KULFA

A section of a protein (Protein Data Bank ID: 1GKY).

@ Folds into a 3d structure, determined by the properties of the amino
acids in the chain.
@ Secondary structure elements are beta strands and alpha helices.

@ The structure of a protein is much more conserved over long
evolutionary periods than its sequence.



@ Amino acids all have the following form, and the residue R determines
which of the 20 types an amino acid is.

R

H
/O

/N Ch QK

H

OH



Peptide bonds

@ Adjacent amino acids form peptide bonds to produce the protein

chain.
Peptide bonds
77777777777777777777777777777 R
N Vi
/N A——Cg—N Cp——Cg—N Ca CB<
H H




Protein structure




Protein alignment

@ The goal is to align the structures, to assess structural similarity.
More informative than assessing via sequences alone.

@ We combine sequence information (sequence ordering and amino acid
types) and structural information.




Protein alignment

@ The goal is to align the structures, to assess structural similarity.
More informative than assessing via sequences alone.

@ We combine sequence information (sequence ordering and amino acid
types) and structural information.




Protein alignment

@ We represent each amino acid by the location of its C, atom.
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Sequence alignment

@ Alignment problem: to identify the correspondence between amino
acids on two proteins.

@ Gaps enable the alignment of compatible amino acid types, allowing
for insertions, deletions and substitutions in the protein sequences.

s*x| HEAGAWGUHEE

s*| P - - - AWWHEATE
(a)

s*| HEAGAMWGUHTE - E

s*| - P - - AW - HEAE

@ Gaps can be in one sequence (a), or in both sequences (b).
@ Sequence orders are preserved.



Scoring sequence alignments

@ Scoring systems, such as PAM matrices, are used to score matches
between each pair of amino acid types.

@ Penalty functions penalise the number and length of gaps in an
alignment.

@ For a gap of length r, a commonly-used penalty function is
f(r)=—g—(r—1)h,

where g is a gap opening penalty and h is an extension penalty.
@ Total score (log scale) of an alignment:
total score of aligned pairs + total gap penalty.

@ We consider alignment of proteins using both 1-dimensional (amino
acid sequence order and perhaps type) and 3-dimensional (C, atomic
coordinates) information.



@ Gap penalty prior (Rodriguez and Schmidler, 2014) for the matching
matrix M:

p(M;g,h) = Z(g, h) exp {—gS(M) — hL(M)},

where S(M) is the number of gaps, r; is the length of the ith gap,
L(M) = Z?:(q/’)(r,- — 1) is the total gap extensions and Z(g, h) is a
normalising constant.

@ Previous prior for M was
p(M; k) o kb,

where L is the number of matches given by M.



@ Gap penalty prior (Rodriguez and Schmidler, 2014) for the matching
matrix M:

p(M; g, h) = Z(g, h)exp {—gS(M) — hL(M)}.

@ This ignores amino acid type information, and just penalises the gap
component of the alignment. (Though type information can easily be
included.)

@ For example, the alignment
5 H EAGAW G H E
SY - P - - AW - H E

gives S=4,and r=1,1,2, 1.

- E
A E



@ Write
U(M; g, h) = gS(M) + hL(M),

the total gap penalty.

@ The joint posterior distribution is

p(M, A, 8,0,x,y) < p(A)p(8)p(o)vto ™ exp{—U(M; g, h)}

1
X expy > 1105 — Ay — 9|1
JokiMy=1

@ Matching matrix M updated by proposing small perturbations whilst
preserving sequence order.



@ A guanylate kinase, 1GKY, and an adenylate kinase, 2AK3. “Twilight

zone" — low sequence identity (< 20% of matched pairs are of same
type).

@ Use g =4, h=0.1, so higher penalty for gap openings than
extensions.

1.0

number

2AK3 residue

0.0

50 100 150

1GKY residue number



@ A guanylate kinase, 1GKY, and an adenylate kinase, 2AK3.

@ Sample from posterior distribution of alignments, highlighting areas of
uncertainty in the alignment and regions of high structural
conservation.

residue number

2AK3 resid|
100
I

50 100 150

1GKY residue number



@ A guanylate kinase, 1GKY, and an adenylate kinase, 2AK3.

@ Samples posterior distribution of alignments, highlighting areas of
uncertainty in the alignment and regions of high conservation.

i

80 90 100 110 120

1GKY residue number



@ Pair 1ICEW — 10UN. Two alternative alignments of first helix.

@ Assess relative merit by posterior probabilities.
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o Alternative alignments of helix.

10UN residue number

| | |
5 10 15 20

1CEW residue number



A general form of penalty

@ More generally, wel consider priors of the form

p(M;0) = Z(0) exp {—Z f(penalty for gap i; 0)} .

]

@ Implementation (MCMC) can still proceed in the same way — just
change in penalty required given a proposal M'.

@ Motivation: For previous gap penalty prior, given L matched points
and S “gap instances” (blocks of consecutive gaps, over both
sequences), the j and k indices forming the matched points are
independent a-priori.

@ In fact,
UM;g,h)=(g —h)S+ (m+n—2L),

so penalty depends only on S and L.

'Fallaize, Green, Mardia and Barber (2019). arXiv: 1404.1556:



Example (Green, 2015.)>

@ Suppose m=9,n =15 and L = 3. Two possible alignments are given
by the sets of indices

Xindex |0 4 5 9 10

Yindex |0 7 8 12 16
and

Xindex |0 4 5 9O 10

Yindex |0 7 11 12 16

@ Both give S =5 and L = 3, and hence are equally preferable under
the prior.

@ At least intuitively, we might prefer the first alignment.

@ In fact, if the X indices are (1,2, 3) (ignoring endpoints), then any set
of y indices of the form (2, k,14), k =4,...,12 would be equally
preferable.

%In Geometry Driven Statistics. Dryden I.L. and Kent, J.T. (eds).



New penalty

@ We consider adding an additional penalty term to discourage this sort
of situation.

@ Consider the matches defined by the triples (j1,j2,3) and (ki, k2, k3).
Then given ji, j3, k1, k3, we encourage matches between j> and k»
which preserve “proportionality”.

@ Specifically, we introduce

g:v) = —-,

where ] _ ] ]

(2 —41)/U3 — j2)

ke — ki)/(ks — ka) ]’

and total penalty contribution for these indices is v(g) + any gap
opening/extension penalties as previously.

qzlog(

@ Total overall penalty is still just a sum over successive pairs and
triples of the matching indices.



New penalty

@ In general, given L matches, we have L triples of matching indices in
the X sequence, given by
Uos1542)s Ut d2543)s - -+ UL—15JLsdL+1)-

@ Similarly, in the Y sequence we have the L triples
(k07 k17 k2)7 (k]_7 k27 k3)’ ceey (kL_17 kL’ kL_l’_l)

@ The total penalty function is

L

U(M: g, h.v) = gS(M) + hL(M) + 3 ¥(qi;v).

@ Letting v = 0, we obtain the original penalty.

@ Many other possibilities ....



g X index
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Application: 1GKY — 2AK3

Probability

Increasmgﬁdex
il
Il
I
I
‘ u‘ \HH
il
H}H\HHH

aleos Auliqedoid

v = 0.25.



ng X index

QaSi

Probability

Increasing Y index

Application: 1GKY — 2AK3

aJeos Aiqedoid

v =4.0.



Application: 16 “challenging” protein pairs.
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Inference for 6

@ Prior is
p(M;0) = Z(0)exp {—U(M;0)} .
@ Could treat @ as unknown, adding an extra layer to the hierarchy.

@ Standard MCMC requires knowledge of

Z(0) =) exp{-UM;0)}.
7

@ Methods which avoid this require ability to simulate from the
distribution.

@ For the standard gap penalty, there are efficient recursions for both
computation of constant and simulation (mimicking the standard
forward /backward algorithm in sequence alignment).

@ This algorithm doesn't seem feasible computationally for general
penalty.



Incorporating amino acid types

We can also incorporate amino acid type information.

@ Sequence of X is §*, with elements sj( €S,j=1,...,mand S is the
set of integers 1 — 20 representing each of the 20 amino acid types.

@ Similar definition for the sequence of Y, 5.

@ The sequence likelihood is

p(5X75y|M7WI) = H ¢ Hqs Hqsk
_] 1

j,k:M

where W/ is a 20 x 20 PAM matrix for scoring each pair of amino acid
types, accounting for an evolutionary distance /.

@ (s is the background proportion of an amino acid of type s in all
proteins.



@ PAM — “point accepted mutations”.
@ The elements of W/ are

)
wh,o =28 4 p=1,...,20,

dadb

where pgg is the probability of an amino acid of type a being

substituted into an amino acid of type b over an evolutionary distance
of /, and q,, g are the relative proportions of amino acid types a and
b in all proteins.

@ One-step transitions pgi) estimated from alignments of closely related

proteins, rescaled so that probability of a substitution to a different
amino acid type at any one site over one “evolutionary unit” is 0.01.

@ For PAM-/ matrix, /% “point accepted mutations”. The larger the
value of /, the greater the tolerance to substitutions, implying a

longer evolutionary distance.

o As | — o0, pglb) tends to product of background probabilities.



@ The joint posterior distribution is now

p(M,A,6,0,x,y,5%,5") o p(A)p(6)p(o)v" exp{—U(M; )}
Vg 05 = Avic = 9)/(0V2)}
X j,k;ll\/;{—l (U\/i)d

m n
<[] as 1] ag-
j=1 k=1

@ We can consider / to be fixed (use a fixed PAM matrix) or include it
as an unknown in the model and obtain its marginal posterior.

@ This framework allows a natural measure of the evolutionary distance
between two proteins.

@ For convenience, we consider a discrete set of possible values for /.



@ Example: Guanylate kinase pair 1IGKY-1LVG. Closely related (=~ 52%
sequence identity).

@ Posterior mode of [ is 80.

Posterior probability




@ Example: The pair 1GKY-2AK3 revisited.

@ Posterior mode of / is 260, indicating a longer evolutionary distance.
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Conclusions

@ Fully Bayesian model allows joint inference for matching and
transformation /alignment.

@ Flexibility to incorporate various forms of prior information.

@ Biologically-meaningful results.

@ Future work:

]

Large-scale assessment of improvement in alignments using general
penalty functions.

Inference for @ in general penalty functions.

Changes to model/prior to allow e.g. protein flexibility (“twists”),
non-sequential matching (domain swaps).

Incorporate additional information, e.g. hydrogen bonding, electrostatic
potentials.

Multiple configurations — alignment, clustering, structure classification.
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