Dynamics and robustness of plant form

ENS de Lyon Virginie Battu
Annamaria Kiss Gabor
Corentin Mollier
Françoise Monéger
Max Planck Göttingen
Karen ALIM
Hebrew University Jerusalem
Shahaf ARMON
UC Santa Barbara
Boris SHRAIMAN

INRA Versailles
Eric Biot
Millàn Cortizo Sabugo Jasmine Burguet Mohammed Oughou
Aude Maugarny-Calès
Beatriz Gonçalves
Bernard Adroher
Philippe Andrey
Patrick Laufs

Arezki Boudaoud, Department of Biology
 ENS de Lyon, University of Lyon

What determines the trajectory in the space of shapes?

Outline

- Average dynamics of leaf contours
-From leaf contour to leaf blade
-Distributions of flower shape

Leaves in the model plant Arabidopsis thaliana

It is highly difficult to follow the same living leaf

How to obtain a trajectory in shape space from independent samples?

Why leaves?

- Source of energy (photosynthesis)
- Diverse shapes: simple, lobed, compound; toothed, untoothed
- Shape ~ paleoclimates?

Greenwood, New Phytol 2005

Some of the previous approaches for leaves

Landmarks
 + PCA

Klingenberg
J Evol Biol 2012

Langlade et al. PNAS 2005
Discretised contour + PCA

Fourier modes + PCA

Chitwood et al.
Plant Physiol 2012

Little investigation of developmental trajectories

Combining landmarks and contours to analyse leaf morphogenesis

Collect a large number of samples (~ 300)

Identifying landmarks

- Basis, 2 points: expert
- Leaf tip: distance from basis
- Sinuses: curvature
- Tooth tips: curvature or symmetry

- Identifying primary sinuses: iterative tests based on angles (one parameter: limit angle)

Registration and reparametrisation

Contours $\mathbf{f}_{i}(s), i \in\{0, \ldots, n\}, s \in\left[0, s_{i, \omega}\right]$
Landmarks $\left\{s_{i, \alpha}\right\}, \alpha \in\{0, \ldots, \omega\}$ with $s_{i, 0}=0$

- Co-reparametrisation:
- Co-reparametrisation:
$\varphi_{i}:\left[0, s_{i, \omega}\right] \rightarrow[0,1]$ piecewise affine, such that $\varphi_{i}\left(s_{i, \alpha}\right)=\frac{\left\langle s_{i, \alpha}\right\rangle_{i}}{\left\langle s_{i, \omega}\right\rangle_{i}}$

Co-parametrised contours: $g_{i}=f_{i} \circ \varphi_{i}$

- Co-registration

Minimise the distance between contours modulo rotation-translation $\left(\mathrm{R}_{i}\right)$ and scaling $\left(\rho_{i}\right)$:

$$
\mathcal{E}\left(\left\{\rho_{i}, \mathrm{R}_{i}\right\}\right)=\sum_{i>j} \int_{0}^{1} \mathrm{~d} \tilde{s}\left(\rho_{i} \mathrm{R}_{i} \mathbf{g}_{i}(\tilde{s})-\rho_{j} \mathrm{R}_{j} \mathbf{g}_{j}(\tilde{s})\right)^{2}
$$

solved through iterated Procustes transformations to an averaged contour

- Outcome:

Registered contours/landmarks $\mathrm{R}_{i} \mathbf{f}_{i}(s)$, to keep size information

Contours+ landmarks

Leaf tip vs. no landmark

Contours+

 landmarks

Contours+ landmarks

Developmental trajectories

Developmental trajectories

ρ

Sliding average (Gaussian kernel)

+ quantification of leaf shape / teeth

Developmental trajectories

+ quantification of leaf shape / teeth

Comparison wild-type / mutant

From leaf contours to leaf blade

Conformal maps: transformations that keep the same angles In 2 D , the contours define all the transformation!

Applying conformal maps to leaves

Approach:

- Observe growing leaves
- Quantify contours and predict growth assuming conformal map (Schwartz-Christoffle)
- Quantify growth in the lamina
- Compare 'predicted' and measured growth

Good 'prediction' of displacements

Prediction of smoothed growth distribution

Robustness of form

Shape and size are robust in spite of internal and external perturbations

Bilateral symmetry

Shape and size are robust in spite of internal and external perturbations

Flower size in Arabidopsis varies by about 5\%

The sepal as a model system

abaxial sepal

Genetic screen for variability:

Individual plants in which sepals are variable in size
flowers from a single WT plant

flowers from the single vos / plant

Genetic screen for variability:

Individual plants in which sepals are variable in size

WT sepals

vos / mutant sepals

Towards a 3D analysis

- Image in 3D (confocal microscopy)
-Binary images (supports) of many sepals
-Distance = overlap between supports
-Co-registration
- Probabilistic sepal

Summary

-Combining landmarks and contours to analyse leaf shape during morphogenesis
-Contours give all information for 2D isotropically growing systems
-Work in progress: variability of contours, 3D shape

Biot et al. Development 2016
Alim et al. Phys. Biol. 2016
Hong et al. Dev Cell 2016
Mollier et al. in progress

