Dynamics and robustness of plant form

ENS de Lyon

Virginie Battu Annamaria Kiss Gabor Corentin Mollier Françoise Monéger

Max Planck Göttingen Karen ALIM

Hebrew University Jerusalem Shahaf ARMON

UC Santa Barbara Boris SHRAIMAN

INRA Versailles

Eric Biot Millàn Cortizo Sabugo Jasmine Burguet Mohammed Oughou Aude Maugarny-Calès Beatriz Gonçalves Bernard Adroher Philippe Andrey Patrick Laufs

Arezki Boudaoud, Department of Biology ENS de Lyon, University of Lyon

What determines the trajectory in the space of shapes?

Outline

Average dynamics of leaf contours
From leaf contour to leaf blade

•Distributions of flower shape

Leaves in the model plant Arabidopsis thaliana

It is highly difficult to follow the same living leaf

samples 6th leaf

How to obtain a trajectory in shape space from independent samples?

Why leaves?

- Source of energy (photosynthesis)
- Diverse shapes: *simple, lobed, compound; toothed, untoothed*
- Shape ~ paleoclimates?

Greenwood, New Phytol 2005

Some of the previous approaches for leaves

Landmarks + PCA

Klingenberg J Evol Biol 2012

Discretised contour + PCA

Langlade et al. PNAS 2005

Fourier modes + PCA

Chitwood et al. Plant Physiol 2012

Little investigation of developmental trajectories

Combining landmarks and contours to analyse leaf morphogenesis

Collect a large number of samples (~300)

Identifying landmarks

- Basis, 2 points: expert
- Leaf tip: distance from basis
- Sinuses: curvature
- Tooth tips: curvature or symmetry

- Identifying primary sinuses: iterative tests based on angles (one parameter: limit angle)

Registration and reparametrisation

Contours $\mathbf{f}_i(s), i \in \{0, ..., n\}, s \in [0, s_{i,\omega}]$

Landmarks $\{s_{i,\alpha}\}, \alpha \in \{0, \ldots, \omega\}$ with $s_{i,0} = 0$

- Co-reparametrisation:

 $\varphi_i: [0, s_{i,\omega}] \to [0, 1]$ piecewise affine, such that $\varphi_i(s_{i,\alpha}) = \frac{\langle s_{i,\alpha} \rangle_i}{\langle s_{i,\omega} \rangle_i}$

Co-parametrised contours: $g_i = f_i \circ \varphi_i$

- Co-registration

Minimise the distance between contours modulo rotation-translation (R_i) and scaling (ρ_i): $\mathcal{E}(\{\rho_i, R_i\}) = \sum_{i > i} \int_0^1 d\tilde{s} \left(\rho_i R_i \mathbf{g}_i(\tilde{s}) - \rho_j R_j \mathbf{g}_j(\tilde{s})\right)^2$

solved through iterated Procustes transformations to an averaged contour

- Outcome:

Registered contours/landmarks $R_i f_i(s)$, to keep size information

Leaf tip vs. no landmark

Contours+ landmarks

Contours+ landmarks

Developmental trajectories

Developmental trajectories

n

Sliding average (Gaussian kernel) + quantification of leaf shape / teeth

Developmental trajectories

+ quantification of leaf shape / teeth

From leaf contours to leaf blade

Conformal maps: transformations that keep the same angles In 2D, the contours define all the transformation!

Applying conformal maps to leaves

Approach:

- Observe growing leaves
- Quantify contours and predict growth assuming conformal map (Schwartz-Christoffle)
- Quantify growth in the lamina
- Compare 'predicted' and measured growth

Good 'prediction' of displacements

Prediction of smoothed growth distribution

Robustness of form

Shape and size are robust in spite of internal and external perturbations

Bilateral symmetry

Shape and size are robust in spite of internal and external perturbations

Flower size in Arabidopsis varies by about 5%

Genetic screen for variability:

Individual plants in which sepals are variable in size

flowers from a single WT plant

flowers from the single vos l plant

Genetic screen for variability:

Individual plants in which sepals are variable in size

vos I mutant sepals

Towards a 3D analysis

- Image in 3D (confocal microscopy)
- •Binary images (supports) of many sepals
- Distance = overlap between supports
- Co-registration
- Probabilistic sepal

Summary

•Combining landmarks and contours to analyse leaf shape during morphogenesis

•Contours give all information for 2D isotropically growing systems

•Work in progress: variability of contours, 3D shape

Biot et al. Development 2016 Alim et al. Phys. Biol. 2016 Hong et al. Dev Cell 2016 Mollier et al. in progress