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Schematic illustration of the human brain. 
 S. Budday et al. 2014 

3D model of a real human brain. Zbrush, 
3DsMax (Vray) 



28 weeks 33 weeks 

Fetal brain normal development with dramatic changes in size and 

shape between 20 and 40 weeks 

Fetal 2D images and reconstructed cortical meshes with the curvature 
coded in color at different gestational ages. Sulci are in red while gyri are in 
yellow. Lefèvre et al. 2015 
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Fetal brain normal development with dramatic changes in size and 

shape between 20 and 40 weeks 
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Measuring cortical folding. K.E. Garcia et al. 2018 
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Toro et al. 2008 Porthero al al. 1984 

Cortical surface versus hemispheric volume. 

 Cortical folding                     Overall size of the brain  
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Surface ratio for the local estimation of folding. Toro et al. 2008 

 Cortical folding                     Overall size of the brain  
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Map of average cortical folding (surface ratio) and significance of the effect of total cortical  
surface on local folding (F-ratio values). Toro et al. 2008 

 Cortical folding                     Overall size of the brain  
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Gyrification differences observed between a typically developing brain and severe 
microcephalies. Germanaud et al. 2014 

Microcephaly 270 cm³ 

Control 445 cm³  

 Cortical folding                     Overall size of the brain  

 Can be modified by brain developmental disorders 



Study the impact of the initial geometry of the human fetal brain 

on surface morphology during the cortical development process. 

Using an adapted spherical parameterization to compare several 

cortical surfaces of fetal brains generated by the biomechanical 

model based on the finite element model of differential cortical 

and subcortical growth introduced in (Tallinen et al., 2016). 
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A. Bohi et al. 2019 



Biomechanical modeling 

Competing hypotheses for cortical folding. K. E . Garcia et al. 2018 
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Biomechanical modeling 
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 A plate or shell-like structure, expanding tangentially inside a rigid container 
(skull), would have to fold 

 The skull Constraints growth of the brain and causes compressive stresses and 
buckling. Raghavan et al. 1997 

 Barron 1950  : showed that interactions with skull are not needed to produce 
folding. 

 Welker 1990  : The skull increases in size to accommodate brain growth. 
  
  The role of skull in cortical folding has largely been discounted 



Biomechanical modeling 
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 Tension in axons connecting adjacent regions of the cortex draws those regions 
together to form gyri. Van Essen, 1997 

 Xu et al. 2010 : the observed directions of tension are not consistent with the 
original axonal tension hypothesis 
 

  Axons pull on the brain, but tension does not drive cortical folding   



Biomechanical modeling 
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 Tangential expansion of outer cortical layers, greater than in inner layers, 
causes folding by a mechanical instability  meaning different growth rates in 
different layers. Richman et al. 1975 

 Based on 2 mechanical principles : 
1- Tangential expansion of an elastic layer connected to an elastic foundation 
which does not expand  induces tangential compression in the expanding 
       layer 
2- A thin layer under large compression  will become unstable and buckle 
                   (sinusoidal shape) 

 Other models : Toro & Burnod 2005, Bayly et al. 2013, Budday et al. 2014, 
Tallinen et al. 2014 & 2016 
 

 Validated by physical experiments of Dervaux and Ben Amar 2008, Xu 
      et al. 2010, and Tallinen et al. 2016 

 



Biomechanical modeling 

Differential growth of two layers. (Tallinen et al. 2016) 

 Growth tensor: 

𝒈 𝒚 = 𝟏 +
𝜶

𝟏 + 𝒆(𝟏𝟎(
𝒚
𝑻

−𝟏))
 

𝑮 = 𝒈𝑰 + (𝟏 − 𝒈)𝒏𝒔⨂𝒏𝒔 

 Deformation gradient 

𝑭 = 𝑨(𝑮𝑨𝒓)−𝟏 

 Volumetric strain energy density 

𝑾 =
𝝁

𝟐
𝑻𝒓 𝑭𝑭𝑻 𝑱

−𝟐
𝟑 − 𝟑 +

𝑲

𝟐
𝑱 − 𝟏 𝟐 

 Cauchy stress 

𝜹 =
𝟏

𝑱

𝝏𝑾

𝝏𝑭
𝑭𝑻 
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 Tangential expansion of outer cortical layers, greater than in inner layers, 
causes folding by a mechanical instability 



Spherical parameterization for genus zero 
surfaces using Laplace-Beltrami eigenfunctions 

Definitions :  

 Given an eigenfunction 𝝓 of the Laplace-Beltrami operator, 

we call nodal set the set of points 𝑵(𝝓) where 𝝓 vanishes. 

 The nodal domains correspond to the connected 

components of the complementary of the nodal set. 

 

Theorem (Courant’s nodal domain theorem): 

 The number of nodal domains for the 𝒏-th eigenfunction is 

inferior or equal to 𝒏 + 𝟏 (Neuman boundary conditions). 
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Three first non-trivial eigenfunctions. Each nodal lines are in 
green. (Lefèvre et al., 2015) 



Spherical parameterization for genus zero 
surfaces using Laplace-Beltrami eigenfunctions 

Conjecture (Lefèvre et al. 2015) : Let 𝑴 be a genus zero surface 

in ℝ𝟑. Let 𝝓𝟏, 𝝓𝟐 and 𝝓𝟑 be three non-trivial orthogonal 

eigenfunctions of the Laplace-Beltrami operator. We assume 

they have only two nodal domains. Then the mapping     

         𝐌             →                    ℝ𝟑                         →                     𝕊𝟐 

     

           𝒑              →   𝚽𝟏 𝒑 , 𝚽𝟐 𝒑 , 𝚽𝟑(𝒑)    →   
𝚽𝟏 𝒑 ,𝚽𝟐 𝒑 ,𝚽𝟑(𝒑)

𝚽𝟏 𝒑 𝟐+𝚽𝟐 𝒑 𝟐+𝚽𝟑 𝒑 𝟐
  

 

is well defined. 

Spherical mapping. (Lefèvre et al., 2015) 
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Spherical parameterization for genus zero 
surfaces using Laplace-Beltrami eigenfunctions 

Important remark :  

 The number of nodal domains must be 2. 

 For elongated shapes, the bounds in Courant’s nodal theorem 

are reached.  
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Some complex surfaces are unsuitable because they do not 

satisfy the conditions proposed in the previous conjecture  

Six first eigenfunctions for a smooth fetal brain (first row) and a simulated cortex (second row). A. Bohi et al. 2019 
  

Generalizing the previous conjecture assuming that, for a genus-

zero surface, we can always find three eigenfunctions associated 

to larger eigenvalues in the spectrum with only two nodal 

domains, which allows to provide a better spherical mapping  
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𝑩𝒓𝒆𝒇              𝑴𝒂,𝒃               𝑩𝒂,𝒃,    with    𝑴𝒂,𝒃 =
𝒂 𝟎 𝟎
𝟎 𝒃 𝟎
𝟎 𝟎 𝒄

 

            (𝑩𝒓𝒆𝒇, 𝑩𝒂,𝒃)       Biomechanical Model         (𝑺𝒓𝒆𝒇(𝒕), 𝑺𝒂,𝒃(𝒕)) 

STEP 1: 
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𝑩𝒓𝒆𝒇              𝑴𝒂,𝒃               𝑩𝒂,𝒃,    with    𝑴𝒂,𝒃 =
𝒂 𝟎 𝟎
𝟎 𝒃 𝟎
𝟎 𝟎 𝒄

 

            (𝑩𝒓𝒆𝒇, 𝑩𝒂,𝒃)       Biomechanical Model         (𝑺𝒓𝒆𝒇(𝒕), 𝑺𝒂,𝒃(𝒕)) 
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t=500 t=9000 t=22000 

Biomechanical simulation time steps 
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Compute and smooth curvatures of 𝑺𝒓𝒆𝒇(𝒕) and 𝑺𝒂,𝒃(𝒕) 

STEP 2 & 3: 
21 



The spherical mapping is, then, defined by selecting the best 

three non-trivial eigenfunctions with only two nodal domains, 

from a larger set of eigenfunctions of the Laplace-Beltrami 

operator of 𝑺𝒓𝒆𝒇(𝒕) and 𝑺𝒂,𝒃(𝒕).  

 

  𝑺𝒓𝒆𝒇 𝒕 , 𝑺𝒂,𝒃 𝒕  →                     ℝ𝟑                         →                     𝕊𝟐 

     

            𝒑                 →   𝚽𝟏 𝒑 , 𝚽𝟐 𝒑 , 𝚽𝟑(𝒑)    →   
𝚽𝟏 𝒑 ,𝚽𝟐 𝒑 ,𝚽𝟑(𝒑)

𝚽𝟏 𝒑 𝟐+𝚽𝟐 𝒑 𝟐+𝚽𝟑 𝒑 𝟐
  

STEP 4: 
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Resample the curvature of the spherical map of 𝑺𝒓𝒆𝒇(𝒕) on that of 

𝑺𝒂,𝒃 𝒕 . 

STEP 5: 
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Measure the similarity between the curvature of the surface 

𝑺𝒓𝒆𝒇(𝒕) and the resampled one of the surface 𝑺𝒂,𝒃(𝒕). 

STEP 6: 
24 



Results 1 

Correlation values for different scale factors at step 500, 9000 and 22000. A. Bohi et al. 2019 
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Results 1  

Variations in shape, size, placement and orientation of cortical folds across simulations.  
A. Bohi et al. 2019 
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𝑀(0) 𝑀𝑒𝑠𝑡(0) 𝑀𝑒𝑠𝑡(𝑡1) 𝑀𝑒𝑠𝑡(𝑡𝑛) 

The biomechanical model preserves the global shape of the 

brain, in spite of appearance of cortical folding patterns 

𝑀𝑒𝑠𝑡 𝑡 − 𝑀−1(0) ≤ 2.5% 

Results 2  
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The variations in the initial geometry of the brain strongly 

influence the cortical folding patterns in terms of shape, size, 

placement and orientation of cortical folds 

 Comparing simulated cortical surfaces with real ones 

 Studying the impact of some neurodevelopmental disorders   

Conclusion: 

Future works: 
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 A number of general and specific shape analysis measures, 

derived from differential geometry, have been proposed to 

describe quantitatively the geometry of the cortical surface: 

 Folds depth and convexity estimation (Rabiei et al. 2019) 

 Gyrification index (Rabiei et al. 2016) 

 Spectral analysis (Germanaud et al. 2012) 

 

 All surface processing pipelines, especially, neuroimaging tools 

dedicated to cortical shape analysis include a curvature 

estimation tool (FS, Caret, Brainvisa, ….) 

 

 In the neuroimaging community curvature has long been used 

as a way to visualize the folded structure of the brain. 

 

 No quantitative comparison study exists for assessing potiential 

differences across these techniques in terms of accuracy and 

robustness.   

 

 

Works in progress: Comparative study of 

methods for estimating curvatures 
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Works in progress : Comparative study of 

methods for estimating curvatures 

 7 methods for estimating curvatures are compared: 

 5 from literature : Patch fitting methods (Petitjean  2002), 

Finite-differences methods (Rusinkiewicz 2004), Integral 

methods(Taubin 1995), Normal Cycles-based methods 

(Steiner & Morvan 2003) and Circular arcs-based methods 

(Dong 2005)   

 2 included in neuroimaging tools (Caret and Freesurfer) 

 

 Comparison on : 

 Synthetic surfaces (quadrics), directly with analytical 

curvatures 

 Real brains, by computing the robustness of methods in 

terms of reproducibility (Test-Retest protocol, 20 KKI 

subjects, 19 OASIS subjects) 

 

 In both cases, measuring the sensitivity of methods against 

smoothing. 

 

 



Curvatures on test-retest left hemisphere: 31 

TEST MR1 

RETEST MR2 



Curvatures on test-retest right hemisphere: 32 

TEST MR1 

RETEST MR2 



Some Preliminary Results: Before smoothing 33 

KKI Subjects 

OASIS Subjects 



Some Preliminary Results: After smoothing 34 



Some Preliminary Results: After smoothing 35 

Mean Absolute  
Test-Retest Errors 
All Subjects 

Mean Relative  
Test-Retest Errors 
All Subjects 
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The value of science is more than money ! 
Do you agree ? 
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Effect of sphere radius length. The rostro-caudal gradient in the degree of folding, and 
the prefrontal effect of total cortical surface on folding, are the same for surface ratios 
computed with a sphere-radius of 15mm, 20mm and 25mm. Toro et al. 2008 

Annexe 
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Mean Absolute  
Test-Retest Errors 
1 subject 

Mean Relative  
Test-Retest Errors 
1 subject 

Annexe 


